Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Strategic Long-Range Transportation Planning (SLRTP) is pivotal in shaping prosperous, sustainable, and resilient urban futures. Existing SLRTP decision support tools predominantly serve forecasting and evaluative functions, leaving a gap in directly recommending optimal planning decisions. To bridge this gap, we propose an Interpretable State-Space Model (ISSM) that considers the dynamic interactions between transportation infrastructure and the broader urban system. The ISSM directly facilitates the development of optimal controllers and reinforcement learning (RL) agents for optimizing infrastructure investments and urban policies while still allowing human-user comprehension. We carefully examine the mathematical properties of our ISSM; specifically, we present the conditions under which our proposed ISSM is Markovian, and a unique and stable solution exists. Then, we apply an ISSM instance to a case study of the San Diego region of California, where a partially observable ISSM represents the urban environment. We also propose and train a Deep RL agent using the ISSM instance representing San Diego. The results show that the proposed ISSM approach, along with the well-trained RL agent, captures the impacts of coordinating the timing of infrastructure investments, environmental impact fees for new land development, and congestion pricing fees. The results also show that the proposed approach facilitates the development of prescriptive capabilities in SLRTP to foster economic growth and limit induced vehicle travel. We view the proposed ISSM approach as a substantial contribution that supports the use of artificial intelligence in urban planning, a domain where planning agencies need rigorous, transparent, and explainable models to justify their actions.more » « lessFree, publicly-accessible full text available February 1, 2026
-
High-quality strategic planning of autonomous mobility-on-demand (AMOD) systems is critical for the success of the subsequent phases of AMOD system implementation. To assist in strategic AMOD planning, we propose a dynamic and flexible flow-based model of an AMOD system. The proposed model is computationally fast while capturing the state transitions of two coordinated flows (i.e. co-flows): the AMOD service fleet vehicles and AMOD customers. Capturing important quantity dynamics and conservations through a system of ordinary differential equations, the model can economically respond to a large number and a wide range of scenario-testing requests. The paper illustrates the model efficacy through a basic example and a more realistic case study. The case study envisions replacing Manhattan's existing taxi service with a hypothetical AMOD system. The results show that even a simple co-flow model can robustly predict the systemwide AMOD dynamics and support the strategic planning of AMOD systems.more » « less
-
We propose using surface and aerial shared autonomous electric vehicles (SAEVs) to improve the resilience of infrastructure and communities, or SAEV-R. In disruptive events, SAEVs can be temporarily deployed to evacuate and rescue at-risk populations, provide essential supplies and services to vulnerable households, and transport repair crews and equipment. We present a modeling framework for feasibility analysis and strategic planning associated with deploying SAEVs for disaster relief. The framework guides our examination of three scenarios: a hurricane-induced power outage, a pandemic-affected vulnerable population, and earthquake-damaged infrastructure. The results demonstrate the flexibility of the proposed framework and showcase the potential and versatility of SAEV-R systems to improve resilience.more » « less
-
The goal of this study was to analyze the impact of private autonomous vehicles (PAVs), specifically their near-activity location travel patterns, on vehicle miles traveled (VMT). The study proposes an integrated mode choice and simulation-based parking assignment model, along with an iterative solution approach, to analyze the impacts of PAVs on VMT, mode choice, parking lot usage, and other system performance measures. The dynamic simulation-based parking assignment model determines the parking location choice of each traveler as a function of the spatial–temporal demand for parking from the mode choice model, whereas the multinomial logit mode choice model determines mode splits based on the costs and service quality of each travel mode coming, in part, from the parking assignment model. The paper presents a case study to illustrate the power of the modeling framework. The case study varies the percentage of persons with a private vehicle (PV) who own a PAV versus a private conventional vehicle (PCV). The results indicated that PAV owners traveled an extra 0.11 to 1.51 mi compared with PCV owners on average, and the PV mode share was significantly higher for PAV owners. Therefore, as PCVs are converted into PAVs in the future, the results indicate substantial increases in VMT near activity destinations. However, the results also indicated that adjusting parking fees and redistributing parking lot capacities could reduce VMT. The significant increase in VMT from PAVs implies that planners should develop policies to reduce PAV deadheading miles near activity locations, as the automated era comes closer.more » « less
An official website of the United States government
